Department of Mathematical Sciences August 2009

Topology Preliminary Exam

This exam consists of 6 questions.

- 1. Prove that every compact Hausdorff space is regular.
- 2. Prove that a second countable topological space is Lindelöf.
- 3. Let (Ω, \prec) is the first uncountable ordinal with the order topology.
 - (a) Prove that (Ω, \prec) is not compact.
 - (b) Prove that (Ω, \prec) is limit point compact.
- 4. Prove that the Cantor Set, defined by the middle-third construction, is homeomorphic to $\{0,1\}^{\omega}$.
- 5. Suppose that for each $\alpha \in I$, $(X_{\alpha}, \tau_{\alpha})$ is a topological space. Show that if $\prod_{\alpha \in I} X_{\alpha}$ is Hausdorff, then each space X_{α} is Hausdorff.
- 6. Suppose that (X, σ) and (Y, τ) are topological spaces such that (Y, τ) is Hausdorff, and $f, g: X \to Y$ are continuous functions. Prove that $\{x : f(x) = g(x)\}$ is closed in X.