Ordinary Differential Equations - Preliminary Exam

Closed books, closed notes. Show work for full credit. No calculators are allowed.

1. Let (x(t), y(t)) be a nontrivial solution of the initial value problem

$$\dot{x} = 2x + 4y$$
 , $x(0) = x_0$
 $\dot{y} = 4x + 2y$, $y(0) = y_0$

i.e., assume that we have $(x_0, y_0) \neq (0, 0)$. Find all possible values of $\lim_{t\to\infty} y(t)/x(t)$. Which initial conditions (x_0, y_0) lead to which limit?

- 2. Consider the autonomous linear system $\dot{z} = Az$ of ordinary differential equations, and let $|\cdot|$ denote the Euclidean 2-norm. Consider the two following two statements: If false provide a counterexample, and if true provide a proof.
 - (a) Suppose that all the eigenvalues of A have negative real part. Then every solution of $\dot{z}=Az$ satisfies

 $|z(t)| \le |z(s)|$ for all t > s.

(b) Suppose that A is symmetric and all the eigenvalues of A have negative real part. Then every solution satisfies

$$|z(t)| \le |z(s)|$$
 for all $t > s$.

3. Consider the autonomous planar ordinary differential equation

$$\begin{aligned} \dot{x} &= -x - 2y^2 ,\\ \dot{y} &= xy - y^3 . \end{aligned}$$

- (a) Find all equilibrium solutions of this system, and determine whether the Principle of Linearized Stability applies at any of them.
- (b) Show that the function $V(x, y) = x^2 + 2y^2$ is a Lyapunov function for the system, and use it to determine the stability of the origin (0, 0).
- 4. Consider the autonomous ordinary differential equation

$$\dot{x} = -x ,$$

 $\dot{y} = -y + 2x^2 ,$
 $\dot{z} = z + 2x^2 .$

- (a) Find the general solution of the system.
- (b) Find the stable manifold and the unstable manifold at the origin (0,0,0).