(1) Let K be the set of all nonempty compact subsets of \mathbb{R} . For $A, B \in K$ define

$$d(A, B) = \sup_{x \in A} \inf_{y \in B} |x - y| + \sup_{y \in B} \inf_{x \in A} |x - y|.$$

Prove that (K, d) is a metric space. Is this metric space separable?

- (2) Let X be a normed linear space and X^* its dual space.
 - (a) State the Hahn-Banach theorem.
 - (b) Prove that for any two elements $x, y \in X$ there exists a functional $x^* \in X^*$ such that $x^*(x) \neq x^*(y)$.
- (3) Let $K : [0,1]^2 \to \mathbb{R}$ be a continuous function which satisfies K(t,s) = K(s,t) for all $t, s \in [0,1]$, and then consider the operator T acting on functions by the formula

$$(Tf)(t) = \int_0^1 K(t,s)f(s) \, ds \; .$$

- (a) Show that $T: L^2[0,1] \to L^2[0,1]$ is linear and continuous.
- (b) Find an integral representation for the adjoint $T^*: L^2[0,1] \to L^2[0,1]$.
- (4) A subset C of a Hilbert space H is *convex* if for all $x, y \in C$ and $0 \le t \le 1$ the linear combination $tx + (1 t)y \in C$. Prove that, given a nonempty, closed, convex subset $C \subseteq H$, for every element $x \in H$ there exists an element $y \in C$ such that

$$||x - y|| \le ||x - z|| \quad \text{for all} \quad z \in C.$$

In other words, the minimal distance from x to C is attained at a point $y \in C$. Is this point y uniquely determined by x?

Hint: Construct a minimizing sequence $(x_n) \subset C$ and argue that it is Cauchy. For this, use the facts that $||x_m - x_n|| = ||(x - x_n) - (x - x_m)||$ and that H is a Hilbert space.