Linear Analysis Preliminary Exam

- (1) Let (X, d) be a complete metric space, and let $(A_n)_{n=1}^{\infty}$ denote a nested sequence of closed subsets $A_n \subset X$, i.e., assume that $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}$.
 - (a) Give an example in \mathbb{R} , equipped with the usual distance d(x, y) = |x y|, of such a sequence for which $\bigcap_{n=1}^{\infty} A_n$ is the empty set.
 - (b) If A_1 is compact, show that the intersection $\bigcap_{n=1}^{\infty} A_n$ is not empty.
 - (c) Give an example in \mathbb{R} , equipped with the distance d(x, y) = |x y|, for which the intersection in (b) contains at least two points. What additional assumption guarantees that the intersection contains exactly one point?
- (2) Let X be a real Hilbert space and let $P : X \to X$ be a continuous, selfadjoint linear operator satisfying $P^2 = P$. Show that there exists a closed linear subspace $M \subset X$ such that P is the orthogonal projection P_M onto M.
- (3) Consider the space l_2 of all sequences $x = (x_1, x_2, ...)$ with $\sum_{j=1}^{\infty} x_j^2 < \infty$, and equipped with the usual norm. Prove that every continuous linear functional on the space l_2 is of the form

$$f(x) = \sum_{j=1}^{\infty} c_j x_j$$

with an appropriate condition on the numbers c_j , which you should state and verify.

(4) Let $K : [0,1]^2 \to \mathbb{R}$ be a continuous function with K(t,s) < 1 for all $t, s \in [0,1]$. Show that for each $y \in C[0,1]$ the integral equation

$$x(t) - \int_0^1 K(t,s)x(s) \, ds = y(t) \,, \qquad \text{for all } t \in [0,1]$$

has a unique solution $x \in C[0, 1]$. Furthermore, given an example of a kernel function K which violates the assumption "K(t, s) < 1 for all $t, s \in [0, 1]$ ", and a function $y \in C[0, 1]$, for which the above integral equation has infinitely many solutions.