Linear Analysis Preliminary Exam, August 2011

This exam consists of 4 questions.

1. Let \(X = C^1[0,1] \) denote the vector space of all continuously differentiable real-valued functions defined on the interval \([0,1] \), and let \(\|f\|_\infty = \max\{|f(x)| : x \in [0,1]\} \). Furthermore, define \(\|f\|_A = \|f\|_\infty, \quad \|f\|_B = \|f'\|_\infty, \quad \|f\|_C = \|f\|_\infty + \|f'\|_\infty \).

(a) Which of these three definitions result in a norm on \(X \)?

(b) For which definition is the resulting normed linear space complete? Justify your answer.

2. Let \(H \) denote a Hilbert space, and let \(U \subset H \) denote a subspace.

(a) Show that \(U \subset (U^\perp)^\perp \).

(b) In part (a), is it possible to replace \(U \) by \([U]\) on the left-hand side of the inclusion, where \([U]\) denotes the closure of \(U \)? Give a proof or a counterexample.

(c) In part (a), is it possible to replace the inclusion by an equality? Give a proof or a counterexample.

3. Consider the Hilbert space \(H = L^2(0,1) \) equipped with its usual norm \(\|f\|_2 = (\int_0^1 |f(x)|^2 \, dx)^{1/2} \). Furthermore, define the linear operator \(T : H \to H \) by \(Tf(x) = \int_0^x f(\xi) \, d\xi \). (You do not have to verify the linearity and the fact that \(T \) maps \(H \) into \(H \).)

(a) Prove that \(T \) is a bounded linear operator.

(b) What can you say about the continuity and/or smoothness properties of the functions in the range of \(T \)? Is the operator \(T \) onto?

(c) Determine the point spectrum of \(T \), i.e., the set of all eigenvalues of \(T \).

4. Let \(H \) denote a Hilbert space, let \(T \in \mathcal{L}(H,H) \) denote a bounded linear operator, and let \(T^* \in \mathcal{L}(H,H) \) denote its adjoint.

(a) Using the definition of the adjoint operator and of the orthogonal complement, prove that \(N(T) = R(T^*)^\perp \text{ and } N(T^*) = R(T)^\perp \).

(b) Assume further that \(T \) is a normal operator, i.e., that it satisfies \(TT^* = T^*T \). Show that then the identity \(\|Tx\| = \|T^*x\| \) holds for all \(x \in H \). What does this imply for \(N(T) \) and \(N(T^*) \)?