Name: _____

Topology Preliminary Exam

January 15, 2019

Note: Any space referred to in this exam is both nonempty and Hausdorff, with the possible exception of the last problem.

- 1. Let X and Y be connected spaces and let $X \times Y$ have the product topology. Prove that $X \times Y$ is connected.
- 2. Prove that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .
- 3. Let \mathbb{D} be the unit disk in \mathbb{R}^2 and let $X = \overline{\mathbb{D}}/\partial \mathbb{D}$ be the quotient space of the closure of X by the boundary of X. Prove that X is homeomorphic to the two-sphere \mathbb{S}^2 .
- Endow both N × {0,1} and {0,1} × N with the lexicographic order topologies. One of these two spaces is discrete and the other is not. Decide which is which and show why.
- 5. In the Zariski topology on the complex plane \mathbb{C} , a subset $A \subset \mathbb{C}$ is closed if and only if it is the zero set of a polynomial with complex coefficients. Prove that the Zariski topology is, in fact, a topology. Is it Hausdorff?