Note: Any space referred to in this exam is both nonempty and Hausdorff.

- 1. For each part, give an example of $A \subset \mathbb{R}^2$ satisfying the given condition, with a brief justification:
 - (a) A is closed but not compact.
 - (b) A is connected but not locally connected.
 - (c) A contains points p and q for which there is no homeomorphism $h: A \to A$ with h(p) = q.
- 2. Let (X, d) be an uncountable separable metric space. Show that the set $B = \{p \in X : p \text{ is isolated in } X\}$ is countable.
- 3. A topological space is *zero-dimensional* (with respect to the small inductive dimension) if it has a basis consisting of sets which are both open and closed.
 - (a) Show that Q is zero-dimensional by exhibiting an appropriate basis (don't provide a proof).
 - (b) Prove that \mathbb{Q} does not have a one-point compactification.
 - (c) Prove that every zero-dimensional space has a Stone-Čech compactification. (Hint: use the continuity of carefully-chosen characteristic functions, and quote a theorem.)
- 4. Suppose X is a topological space, (Y, <) is an ordered topological space, and that $f: X \to Y$ and $g: X \to Y$ are continuous. Prove that the set $C = \{x \in X : f(x) \le g(x)\}$ is a closed subset of X.
- 5. Let $i : \mathbb{R} \to \mathbb{R}_{\ell}$ denote the identity function from \mathbb{R} to \mathbb{R}_{ℓ} , where \mathbb{R}_{ℓ} denotes the Sorgenfrey line (that is, the real numbers with the lower-limit topology). Prove that i is not continuous at any point $x \in \mathbb{R}$.