Prelim in Analysis

- 1. Define in general the conjugate space (also known as the dual space) to a normed linear space E and prove it is complete.
- 2. Let (X, d) denote a complete metric space X with metric d, and let $f : X \to X$ be a mapping from X into itself. For $n \in \mathbb{N}$, the *n*-th iterate of f is defined by

$$f^n(x) = \underbrace{f(f(\cdots f(x) \cdots))}_{n \text{ times}},$$

i.e., we have $f^{2}(x) = f(f(x)), f^{3}(x) = f(f(f(x)))$, etc.

- (a) Give an example of a complete metric space X and a continuous map $f: X \to X$ such that f has a unique fixed point, but f^2 does not have a unique fixed point.
- (b) Now assume that $f: X \to X$ is a uniform contraction, i.e., assume there exists a constant c with $0 \le c < 1$ such that $d(f(x), f(y)) \le c \cdot d(x, y)$ for all $x, y \in X$. Show that in this case, for every $n \in \mathbb{N}$ the iterate f^n has a unique fixed point.
- 3. Prove that the linear functional T defined on C[0,1] by

$$Tx(t) = \int_0^{1/2} x(t) \, dt - \int_{1/2}^1 x(t) \, dt$$

is a bounded linear functional on C[0, 1]. Find its norm.

4. Let A be the operator in l_2 (with real scalars) such that

$$Ax = A(x_1, x_2, x_3, \ldots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \ldots).$$

Show that A on l_2 is completely continuous (alias compact). Find the adjoint of the operator A. Find the spectrum of A, including but not limited to all the eigenvalues of A.