Show all work. No work = No points. This test is closed book and closed notes. Use only the methods discussed in this class. You have **120 minutes** to complete this test. Good Luck!

Complete four of the following six problems.

- (1) (10 points) Let (X, d) denote a not necessarily complete metric space, and let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ denote two Cauchy sequences in X. Show that then the sequence $(z_n)_{n \in \mathbb{N}}$ defined by $z_n = d(x_n, y_n)$ converges.
- (2) (10 points) Let (X, d) denote a complete metric space, for every natural number $n \in \mathbb{N}$ let $A_n \subset X$ be open and dense, and let $A = \bigcap_{n \in \mathbb{N}} A_n$ denote the intersection of these sets.
 - (a) Is A always dense? Justify your answer or give a counterexample.
 - (b) Is A always open? Justify your answer or give a counterexample.
- (3) (10 points) Let X denote an inner product space over the field K.
 - (a) For $K = \mathbb{R}$, prove that two elements $x, y \in X$ are orthogonal if and only if they satisfy the Pythagorean theorem, i.e., if and only if the identity $||x+y||^2 = ||x||^2 + ||y||^2$ holds.
 - (b) Does the result from (a) remain true for $K = \mathbb{C}$? Give a proof or a counterexample.
- (4) (10 points) Consider the space X = C[0, 4] equipped with the maximum norm, and define

$$f(x) = x(0) + \int_{1}^{2} x(t) dt - \int_{2}^{4} x(t) dt$$
 for $x \in X$.

Show that then $f \in X^*$ and determine its norm $||f||_{X^*}$.

- (5) (10 points) Let X be a Banach space and let $A \in \mathcal{L}(X,X)$ be arbitrary.
 - (a) Show that the series $T = \sum_{k=0}^{\infty} \frac{1}{k!} A^k \in \mathcal{L}(X, X)$ converges.
 - (b) Express the adjoint T^* in terms of $A^* \in \mathcal{L}(X^*, X^*)$.
- (6) (10 points) Consider the Banach space X=C[0,1] of continuous real-valued functions on the interval [0,1], equipped with the maximum norm. Furthermore, let $a\in X$ denote the function defined by a(t)=2t for $0\le t\le 1/2$ and a(t)=1 for $1/2\le t\le 1$. Finally, define the operator $T:X\to X$ via

$$(Tx)(t) = a(t)x(t) \quad \text{ for all } \quad t \in [0,1] \; .$$

- (a) Determine the resolvent set of T.
- (b) Determine the point spectrum of T.