Department of Mathematical Sciences

Algebra Preliminary Exam, January 2019

This exam consists of 5 questions.

- (1) Let $(\mathbb{Q}, +)$ denote the additive group of the rational numbers. Show that $(\mathbb{Q}, +)$ has a subgroup that is not finitely generated. Is every finitely generated subgroup of $(\mathbb{Q}, +)$ cyclic?
- (2) Show that a group of order 117 has a normal subgroup.
- (3) Let R be a commutative ring.
 - 1. Show that every maximal ideal is prime.
 - 2. If further R is a PID, show that every nonzero prime ideal is maximal.
- (4) Let R be the ring given by

$$R = \left\{ \left(\begin{array}{cc} n & 3m \\ m & n \end{array} \right) : n, m \in \mathbb{Z} \right\}.$$

Show that R is a commutative ring. Show further that an element in R is a unit if and only if n^2 equals either $3m^2 - 1$ or $3m^2 + 1$.

- (5) Let α be an irrational real root of $x^2 + bx + c$ where $b, c \in \mathbb{Q}$.
 - 1. Show that $\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha)$, that is, the smallest subring of \mathbb{R} that contains \mathbb{Q} and α , is a subfield of \mathbb{R} .
 - 2. Find explicitly the inverse of $b + \alpha$ as an element in $\mathbb{Q}[\alpha]$.