Topology Preliminary Exam - January 2014

The symbol \mathbb{R} denotes the real numbers, \mathbb{Q} denotes the rationals and \mathbb{N} denotes the natural numbers.

- 1. Recall that if X and Y are topological spaces, the projection function $\pi_X : X \times Y \to X$ is defined by $\pi_X((x, y)) = x$.
 - (a) Prove that π_X must be an open mapping. This means that the image of an open set in $X \times Y$ under π_X is open in X.
 - (b) Show that π_X need not be a closed mapping. This means there are X, Y and a closed set $K \subset X \times Y$ whose image under π_X is not closed in X. Hint: You may want to consider the set $K = \{(x, \frac{1}{x}) : x \in \mathbb{R} \{0\}\} \subset \mathbb{R} \times \mathbb{R}.$
- Endow both N × {0,1} and {0,1} × N with the lexicographic order topologies. One of these two spaces is discrete and the other is not. Decide which is which and show why.
- 3. Let $W = \{[x, x+1] : x \in \mathbb{R}\}$, and suppose $S \subset W$ such that if $s, t \in S$ then $s \cap t = \emptyset$. Show that $\bigcup S$ is a closed set in \mathbb{R} .
- 4. Let $B_1 = \{(a, b) : a, b \in R \text{ and } a < b\}$, and let $B_2 = \{[r, b) : r \in \mathbb{Q} \text{ and } r < b\}$. $B = B_1 \cup B_2$ is a basis for a topology on \mathbb{R} (you do not need to show this). Show that the topology determined by B is neither the Sorgenfrey line topology (\mathbb{R}_L) nor the usual metric topology on \mathbb{R} .
- 5. Let K be a collection of compact sets in a topological space X which satisfies: If $\{k_1, k_2, \ldots, k_n\}$ is any non empty finite sub-collection of K, then $\bigcap_{i=1}^n k_i \neq \emptyset$. Show that $\bigcap K \neq \emptyset$.