Topology Preliminary Exam January, 2012

Throughout this exam, \mathbb{R} denotes the set of reals with the usual topology, and subsets of topological spaces are assumed to have the subspace topology.

- 1. Suppose (X, d) is a metric space. For $K \subseteq X$ and $p \in X$, define d(p, K) to be $\inf\{d(p, x) : x \in K\}$.
 - (a) Suppose that K is a compact subset of X and $p \in X$. Prove that there is a $k \in K$ such that d(p, k) = d(p, K).
 - (b) Show by example that the result in part (a) can fail if K is only assumed to be a closed subset of X.
- 2. Prove that a countable complete metric space has an isolated point, that is, a point p such that $\{p\}$ is open.
- 3. Let X be a compact Hausdorff space. Prove that every infinite subset of X has a limit point.
- 4. Let S^1 denote the circle $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. For each of the following spaces X, give a reason that S^1 is not homeomorphic to X.
 - (a) X is the closed interval [0,1] in \mathbb{R} .
 - (b) X is the 2-sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ in \mathbb{R}^3 .
 - (c) X is the union $S^1 \cup \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 = 1\}$ of two circles in \mathbb{R}^2 which intersect at a single point.
- 5. Let $\beta \mathbb{N}$ denote the Stone-Čech compactification of the space \mathbb{N} of natural numbers with the discrete topology and let E be the set of even natural numbers. Show that $Cl_{\beta \mathbb{N}}E$ is an open subset of $\beta \mathbb{N}$.