Preliminary Exam 2

- 1. Prove that every compact Hausdorff space is normal.
- 2. Prove that the continuous image of a compact space is compact.
- 3. Suppose that for each $\alpha \in I$, $(X_{\alpha}, \tau_{\alpha})$ is a topological space and $A_{\alpha} \subseteq X_{\alpha}$. Show that $\prod_{\alpha \in I} A_{\alpha}$ is closed in $\prod_{\alpha \in I} X_{\alpha}$ in the Tychonoff product topology if and only if A_{α} is closed in X_{α} for each $\alpha \in I$.
- 4. Prove that any second-countable topological space is separable. Give an example of a separable space which is not second-countable.
- 5. Suppose that (X, d) is a Cauchy complete metric space and $\{F_i\}_{i \in \mathbb{N}}$ is a collection of closed subsets such that for each $i \in \mathbb{N}$, $F_{i+1} \subseteq F_i$ and $\lim_{n \to \infty} diam(F_i) = 0$. Prove that $\bigcap_{i \in \mathbb{N}} F_i \neq \emptyset$.
- 6. Prove that the continuous image of a connected space is connected.