Department of Mathematical Sciences

Topology Preliminary Exam, August 17, 2010

Throughout this exam \mathbb{R} denotes the set of real numbers with the metric d where d(x, y) = |x - y|; \mathbb{P} denotes the set of irrational numbers, and \mathbb{C} denotes the Cantor Set. Metric spaces are assumed to have the metric topology, and subsets of topological spaces are assumed to have the subspace topology. Also, \mathbb{R}_L denotes the Sorgenfrey Line (with topology generated by half open intervals), and the symbol $S(\Omega)$ refers to the space of countable ordinals with the natural order topology.

This exam consists of 6 questions.

- 1. Prove that no two of these subspaces of \mathbb{R} are homeomorphic: $[0, 1], \mathbb{P}, \mathbb{C}$.
- 2. Let (X, T) be a normal topological space and let (D, T^*) be a discrete topological space. Prove that the product $X \times T$, with the product topology, is a normal topological space.
- 3. Prove that \mathbb{R}_L is not metrizable.
- 4. Suppose that A and B are closed subsets of $S(\Omega)$, and $A \cap B = \emptyset$. Show that at least one of A and B is bounded in $S(\Omega)$.
- 5. If U and V are nonempty basic product topology open sets for $\{0,1\}^J$, where J is an infinite set, prove that U and V are homeomorphic subspaces of $\{0,1\}^J$.
- 6. Let $[0,1]^2$ be endowed with the lexicographic order topology. Show that any connected subset which is separable must be homeomorphic to an interval of \mathbb{R} .