Topology Preliminary Exam, August, 2011

Throughout this exam \mathbb{R} denotes the set of real numbers with the metric d where d(x,y) = |x-y|:, \mathbb{P} denotes the set of irrational numbers, and \mathbb{C} denotes the Cantor Set. Metric spaces are assumed to have the metric topology, and subsets of topological spaces are assumed to have the subspace topology. Also, \mathbb{R}_L denotes the Sorgenfrey Line (with topology generated by half open intervals), and the symbol $S(\Omega)$ refers to the space of countable ordinals with the natural order topology.

This exam consists of 6 questions.

- 1. Prove that any bounded and non-empty open set in \mathbb{R}^2 has infinitely many boundary points.
- 2. Let (X,T) be a Hausdorff topological space and let (Y,T^*) be a normal topological space. Prove that the product $X \times Y$, with the product topology, is a Hausdorff topological space.
- 3. Prove that \mathbb{R}_L does not have a countable basis.
- 4. Suppose that A is an infinite subset of $S(\Omega)$ Prove that A has a limit point in $S(\Omega)$.
- 5. If Y is a connected and dense subset in (X,T), prove that (X,T) is a connected topological space...
- 6. Let $(X, <_x)$ and $(Y, <_Y)$ be well ordered sets. Prove that $X \times Y$ with the lexicographical order is a well ordered set..