Topology Preliminary Exam

This exam consists of 6 questions. The following notation will be used throughout this exam: \mathbb{R} denotes the set of real numbers and it and all of its subspaces have the usual topology, induced by the metric d where d(x,y) = |x - y|.

- (1) Suppose that (X, d) is a metric space. Prove that if $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ are bounded uniformly continuous functions, then $fg : X \to \mathbb{R}$ is uniformly continuous, where (fg)(x) = f(x)g(x).
- (2) Let (X, d) be a metric space. Prove that there exists a subset S of X such that
 - (i) if $p, q \in S$ with $p \neq q$, then $d(p,q) \ge 1$ and
 - (ii) if $p \in X$, then there exists a $q \in S$ such that d(p,q) < 1.
- (3) Let X be a connected Tychonov space. Prove that if |X| > 1, then $|X| \ge \mathfrak{c}$, where |X| denotes the cardinality of X and $\mathfrak{c} = |\mathbb{R}|$.
- (4) Suppose that X and Y are regular topological spaces. Prove that $X \times Y$ (with the product topology) is regular.
- (5) Prove that every subspace of \mathbb{R} is separable.
- (6) Let X be a compact Hausdorff space. Prove that every infinite subset of X has an accumulation point.