Topology Preliminary Exam: January 10, 2020

This exam consists of 6 questions, all of equal weight. You must do *only* 5 questions. DO NOT submit solutions to all 6 problems.

- (1) Let X be a topological space and give $X \times X$ the product topology. Prove that X is Hausdorff if and only if the diagonal $\Delta(X) = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.
- (2) Let X and Y be path-connected topological spaces. Prove that $\pi_1(X \times Y)$ is isomorphic to $\pi_1(X) \times \pi_1(Y)$.
- (3) Let X be a topological space and Y a set. Let $f: X \to Y$ be a surjective function.
 - (a) Define a set $V \subset Y$ to be open iff $f^{-1}(V)$ is open in X. Prove that this defines a topology on Y.
 - (b) Prove that the topology on Y from Part (a) is the finest topology on Y making f continuous.
 - (c) What is the coarsest topology on Y making f continuous?
 - (d) With the topology on Y from Part (a), prove that Y is connected if X is connected.
- (4) Prove that if $f: X \to Y$ is a proper continuous function between locally compact Hausdorff spaces, then f is a closed mapping.
- (5) Prove that every compact metric space is complete and bounded.
- (6) Let X be a set, and equip it with the cofinite topology (finite complement topology). Prove that X is metrizable if and only if X is finite.