Topology Preliminary Exam

This exam consists of 6 questions. The following notation will be used throughout this exam: \mathbb{R} denotes the set of real numbers and it and all of its subspaces have the usual topology, induced by the metric d where d(x, y) = |x - y|. Metric spaces are assumed to have the metric topology, and subsets of topological spaces are assumed to have the subspace topology.

- (1) For each of the following pairs of spaces, find a topological property which distinguishes them, that is, find a topological property which one of the spaces has but the other does not.
 - (a) The open interval (0,1) and the closed interval [0,1] in \mathbb{R} .
 - (b) The closed interval [0,1] in \mathbb{R} and the circle $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ in \mathbb{R}^2 .
- (2) Prove that if (X, d) is a metric space, then X is normal.
- (3) Let X and Y be connected topological spaces. Prove that the product $X \times Y$, with the usual product topology, is connected.
- (4) Let $\omega = \{0, 1, 2, \dots\}$ be the set of non-negative integers and $X = [0, 1]^{\omega}$ have the box topology, that is, a base for the topology is all sets of the form $\prod_{k=0}^{\infty} U_k$ where U_k is open in [0, 1]. Let $S = \{(x_k)_{k=0}^{\infty} : \lim_{k \to \infty} x_k = 0\}$. Prove that S is both open and closed in X.
- (5) Prove that a compact Hausdorff space is regular.
- (6) Suppose that X is a topological space, D is a dense subset of X, and Y is a Hausdorff space. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions such that f(x) = g(x) for every $x \in D$. Prove that f(x) = g(x) for every $x \in X$.