Department of Mathematical Sciences

Topology Preliminary Exam, August 2019

This exam consists of 6 questions, all of equal weight. You must do *only* 5 questions. DO NOT submit solutions to all 6 problems.

- (1) Prove that a locally compact Hausdorff space is completely regular.
- (2) Let X be path-connected. Prove that $\pi_1(X)$ is abelian if and only if all basepoint-change homomorphisms β_h depend only on the endpoints of the path h.
- (3) For a collection of spaces X_{α} , $\alpha \in \mathcal{A}$, let $\prod_{\alpha} X_{\alpha}$ be the cartesian product with the product topology. Let X be a topological space. Show that a function $f: X \to \prod_{\alpha} X_{\alpha}$ is continuous if and only if the composition $X \to \prod_{\alpha} X_{\alpha} \to X_{\beta}$ is continuous for each $\beta \in \mathcal{A}$ where $\prod_{\alpha} X_{\alpha} \to X_{\beta}$ is the canonical projection $\{x_{\alpha}\}_{\alpha} \mapsto x_{\beta}$.
- (4) Show that a closed map $f: X \to Y$ is proper if each fibre $f^{-1}(y)$ is compact.
- (5) Prove that if A is a connected subset of a topological space X and $A \subset B \subset \overline{A}$, then B is connected.
- (6) Prove that a metric space is separable if and only if it is second countable.