Topology Preliminary Exam

This exam consists of 6 questions. The following notation will be used throughout this exam: \mathbb{R} denotes the set of real numbers and I denotes the closed interval [0, 1]. The "usual" topology on each of these will be as subspaces of \mathbb{R} with the metric d where d(x, y) = |x - y|. Also S_{Ω} denotes the well ordered ordinal space which is uncountable but for which all proper initial segments are countable. Assume all spaces are Hausdorff unless otherwise indicated.

- (1) Prove that any connected open subset of \mathbb{R}^n is path connected.
- (2) Let $\{0,1\}$ and $\{0,1,2,3\}$ be considered as discrete topological spaces. Prove that $\{0,1\}^{\omega}$ and $\{0,1,2,3\}^{\omega}$ are homeomorphic to each other.
- (3) Prove that S_{Ω} is not metrizable (so no metric on the set S_{Ω} produces the same topology as the order topology).
- (4) Suppose that X is a connected normal space having at least two points. Prove that the cardinality of X is at least the cardinality of \mathbb{R} .
- (5) Let $[0,1] \times [0,1]$ be endowed with the dictionary order topology and let π_1 and π_2 denote the projection functions to the first and second coordinates. Suppose $f : \mathbf{I} \to [0,1] \times [0,1]$ is continuous. Prove that $\pi_1(f(\mathbf{I}))$ is a constant map.
- (6) Prove that a compact Hausdorff space must be normal.