Department of Mathematical Sciences

Topology Preliminary Exam

Throughout this exam \mathbb{R} denotes the set of real numbers with the metric d where d(x, y) = |x - y|. Metric spaces are assumed to have the metric topology, and subsets of topological spaces are assumed to have the subspace topology.

This exam consists of 5 questions.

- 1. Prove that the circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is not homeomorphic to the disk $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.
- 2. Let (X, d) be a metric space which is not separable. Prove that X has an uncountable closed, discrete subset.
- 3. Suppose that X is a countably compact topological space, that is, a topological space such that every open cover with countably many elements has a finite subcover. Prove that every continuous function $f: X \to \mathbb{R}$ is bounded.
- 4. Let X be a Tychonoff space such that $|X| < \mathfrak{c} = 2^{\aleph_0}$. Prove that X has a base \mathcal{B} such that each $B \in \mathcal{B}$ is both open and closed in X.
- 5. Suppose that X and Y are arc-connected metric spaces. Prove that the product $X \times Y$ is also arcconnected. (Recall that a space X is arc-connected if whenever $p, q \in X$, there is a continuous function $f: [0,1] \to X$ such that f(0) = p, f(1) = q.)