Ordinary Differential Equations Preliminary Exam - August 2013

Instructions: This exam consists of four problems. You are to do all four of the problems. Closed books, closed notes. State any theorems that you use.

1. Consider the system in \mathbb{R}^n of the form

$$\dot{x} = Ax + h(x)$$

where

- (i) A is an n by n matrix such that all the eigenvalues of A have real part less than zero.
- (ii) $h: \mathbb{R}^n \to \mathbb{R}^n$ satisfies h(0) = 0, and

$$\lim_{x \to 0} \frac{|h(x)|}{|x|} = 0.$$

Do the following

- (a) State a theorem that shows that the equilibrium x = 0 is asymptotically stable for the equation $\dot{x} = Ax$.
- (b) Show that the equilibrium x = 0 of $\dot{x} = Ax + h(x)$ is asymptotically stable.
- 2. Consider the system

$$\dot{x} = -x$$
$$\dot{y} = 2y + x^2$$

Let $\phi(t, x_0, y_0)$ denote the solution of this system with initial condition (x_0, y_0) .

- (a) Determine the nature of the equilibrium at the origin. Justify your result by referring to appropriate theorems.
- (b) Define the set $U = \{(x_0, y_0) \in \mathbb{R}^2 : \lim_{t \to -\infty} \phi(t, x_0, y_0) = (0, 0)\}$. Determine the set U for the above system. Justify your answer.
- (c) Define the set $S = \{(x_0, y_0) \in \mathbb{R}^2 : \lim_{t \to \infty} \phi(t, x_0, y_0) = (0, 0)\}$. Determine the set S for the above system. Justify your answer.

3. This problem concerns the system

$$\dot{x} = -x^3 + \lambda x \dot{y} = -y$$

- (a) Let $\lambda = -1$. Determine all equilibria and classify their stability and type (where type means saddle, node, focus, center, center-focus, or other.) Justify your answer by recourse to an appropriate theorem. Plot a phase portrait.
- (b) Let $\lambda = 1$. Determine all equilibria and classify their stability and type. Justify your answer by recourse to an appropriate theorem. Plot a phase portrait.
- (c) For all λ values, determine the equilibria as a function of λ , classify their stability and type. For which λ values is the phase portrait similar to the portrait in (a), for which λ values is it similar to the portrait in (b), and for which λ values is it different from either phase portrait?
- 4. This problem concerns the system

$$\dot{x} = x - y - x^3$$

$$\dot{y} = x + y - y^3$$

(a) Show how to convert the system to polar coordinates

$$\dot{r} = r \left(1 - r^2 \frac{3 + \cos 4\theta}{4} \right)$$
$$\dot{\theta} = 1 - r^2 \frac{\sin 4\theta}{4}$$

Hint: Use the trigonometric identities:

$$\cos^2\theta = \frac{1+\cos 2\theta}{2}; \ \sin^2\theta = \frac{1-\cos 2\theta}{2}$$

- (b) Show that r = 0 is the only equilibrium.
- (c) Show that for r < 2, all solutions are moving counterclockwise.
- (d) Find the maximum radius $r_1 < 2$ such that all solutions are crossing outward across r_1 . Find the minimum radius $r_2 < 2$ such that all solutions are crossing inward across r_2 .
- (e) Prove that there is a periodic orbit somewhere in the annulus $r_1 \leq r \leq r_2$.