Ordinary Differential Equations Preliminary Exam

This exam consists of 4 questions.

- (1) Suppose that A is an $n \times n$ -matrix.
 - (a) If $A^2 = 0$, find an explicit formula for e^{tA} .
 - (b) Now assume that $A^2 = -I$, and then find an explicit formula for e^{tA} .
 - (c) Determine the stability of the origin of the linear system $\dot{x} = Ax$ if the coefficient matrix satisfies $A^2 = 0$. What can you say if $A^2 = -I$?
- (2) For the system:

$$\dot{x} = x - y - \left(x^2 + \frac{3}{2}y^2\right)x$$

$$\dot{y} = x + y - \left(x^2 + \frac{1}{2}y^2\right)y,$$

(a) Show that when the system is transformed to polar coordinates,

$$\dot{r} = r(1 - r^2) + r^3 \sin^2(\theta) \left(\sin^2(\theta) - \frac{1}{2} \right).$$

- (b) For the annulus $A = \{(x,y): 1/2 < x^2 + y^2 < 2\}$, assuming that there are no equilibria in A, show that the system has a periodic orbit in A.
- (3) (a) For the system

$$\dot{x} = x^2 - (x^3 + y^3 + z^3)x$$

$$\dot{y} = y^2 - (x^3 + y^3 + z^3)y$$

$$\dot{z} = z^2 - (x^3 + y^3 + z^3)z,$$

show that the set $C = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ is an invariant set.

- (b) Let $x \in \mathbb{R}^n$, and let $g : \mathbb{R}^n \to \mathbb{R}$ and $f : \mathbb{R}^n \to \mathbb{R}^n$ be smooth functions. Define the set $S = \{x : g(x) = 0\}$. Find a condition such that S is an invariant set for the differential equation $\dot{x} = f(x)$.
- (4) Consider the autonomous system

$$\dot{x} = -y + f(x, y)$$

$$\dot{y} = \sin x,$$

where $f: \mathbb{R}^2 \to \mathbb{R}$ is a smooth function.

- (a) Show that for $f(x,y) \equiv 0$ the system is Hamiltonian, determine its Hamiltonian H(x,y), and sketch the phase portrait.
- (b) For $f(x,y) \equiv 0$, determine the stability properties of all equilibria.
- (c) Show that if f satisfies $xf(x,y) \leq 0$ for all $x,y \in \mathbb{R}$, then the equilibrium (0,0) is stable. (Hint: Can you use the function H from (a)?)