Ordinary Differential Equations Preliminary Exam

This exam consists of 4 questions.

(1) Consider the parameter-dependent planar inhomogeneous linear system

$$\dot{x} = A_{\alpha}x + b_{\alpha} ,$$

where

$$A_{\alpha} = \begin{bmatrix} 1 & \alpha \\ 4 & 1 \end{bmatrix}$$
 and $b_{\alpha} = \begin{bmatrix} 1 - \alpha \\ 3 \end{bmatrix}$,

as well as the associated homogeneous system $\dot{x} = A_{\alpha}x$.

- (a) Determine the stability of the origin for the homogeneous system as a function of the real parameter α .
- (b) For each value of α , find all equilibrium solutions of the inhomogeneous system.
- (c) Sketch the phase portraits of the inhomogeneous system for both $\alpha = +1$ and $\alpha = -1$.

(2) Consider the second-order differential equation

$$\ddot{x} = \sin x \cos x \; .$$

- (a) Write the differential equation as a first order system of two ordinary differential equations, and show that the resulting system is Hamiltonian.
- (b) Sketch the phase portrait of the planar system from part (a).
- (c) For the planar system from part (a), find the global stable and unstable manifolds of the equilibrium at the origin. Justify your answers.

(3) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable function with $f(x_0) = 0$, and consider the differential equation

$$\dot{x} = f(x)$$
 .

Moreover, let $V : \mathbb{R}^2 \to \mathbb{R}$ be a nonnegative and differentiable function such that $V(x_0) = 0$, and V(x) > 0 for $x \neq x_0$.

- (a) Assume that V is decreasing on solutions of the above differential equation, i.e., assume that for every solution x(t) we have $\frac{d}{dt}(V(x(t))) \leq 0$. Show that then the equilibrium x_0 is stable.
- (b) Use part (a) to show that the equilibrium at the origin for the following system is stable:

$$\dot{x}_1 = -x_1 + x_2 + x_1 x_2 \dot{x}_2 = x_1 - x_2 - x_1^2 - x_2^3$$

(Hint: Try a radially symmetric function V.)

(4) Consider the system

$$\dot{x} = y$$

 $\dot{y} = -x + y \left(1 - x^2 - 2y^2\right)$

Let r represent the distance of a point to the origin.

- (a) Find all equilibria for this system.
- (b) Show that $\dot{r} > 0$ for $r = \frac{1}{2}$, and $\dot{r} < 0$ for $r = \frac{3}{2}$. (Hint: $\frac{d}{dt}(r^2) = \frac{d}{dt}(x^2 + y^2)$). Use this to write \dot{r} in terms of x and y.)
- (c) Show that the system has a periodic orbit in the annulus $\left\{\frac{1}{2} < r < \frac{3}{2}\right\}$. State any theorem that you use.