Numerical Analysis Preliminary Examination questions January 2018

<u>Instructions</u>: Closed book. NO CALCULATORS are allowed. This examination contains **seven** problems, each worth 20 points. Do any **five** of the seven problems. Show your work. Clearly indicate which **five** are to be graded.

PLEASE GRADE PROBLEMS: 1 2 3 4 5 6 7

- 1. Consider the Newton-Raphson method with given initial guess x_0 used to generate a sequence $\{x_n\}, n > 0$ to calculate the reciprocal of the number N by solving $\frac{1}{x} = N$.
 - (a) Show that the iteration can be written as $n \ge 0$, $x_{n+1} = x_n(2 Nx_n)$.
 - (b) Show that if the sequence $\{x_n\}$ converges to the root, then the convergence rate is *quadratic*.
- 2. (a) Given *n* distinct data values (t_i, y_i) , i = 1, ..., n, $t_i \in \mathbb{R}^1$, $y_i \in \mathbb{R}^1$, $t_1 < t_2 < \cdots < t_n$, show that there exists a unique polynomial of degree at most n 1 that interpolates this data. Describe a method to find this polynomial.
 - (b) Let $P_1(f;t)$ be a polynomial of degree 1 interpolating the function f(t) at t_1, t_2 . If $f \in C^2[t_1, t_2]$, show that the error in linear interpolation satisfies,

$$f(x) - P_1(f;t) = (t - t_1)(t - t_2)\frac{f''(\xi(t))}{2}, \quad t_1 < t < t_2$$

- 3. Consider solving the linear system of equations Ax = b for an invertible matrix A and a fixed right hand side $b \neq 0$.
 - (a) Given an approximate solution $\hat{x} \neq 0$, set $\hat{b} = A\hat{x}$ and define the relative forward error (RFE) and relative backward error (RBE) for this problem.
 - (b) Find a formula for the condition number of the problem by taking the supremum of the ratio between the RFE and RBE over all inputs \hat{b} such that $\hat{b} \neq b$. (Recall that $||A|| = \sup_{v \neq 0} \frac{||Av||}{||v||}$)
 - (c) Compare the condition number of the above problem to the condition number of the matrix A and explain the difference.

- 4. (a) Derive the Gaussian quadrature rule using two nodes for approximating the integral $\int_{-1}^{1} f(x)x^n dx$ where $n \in \mathbb{N}$ is odd.
 - (b) Apply your quadrature rule to $f(x) = x^4$ and compare to the true value of the integral. Show that the error is $\mathcal{O}(n^{-3})$.
- 5. Assume that f satisfies $|f(x) f(y)| < L|x y|^{\alpha}$ for some $L, \alpha > 0$ and for all $x, y \in \mathbb{R}$.
 - (a) Show that when $\alpha \neq 1$ we have $|f^n(x) f^n(y)| < c \left(\frac{|x-y|}{c}\right)^{\alpha^n}$ where $c = L^{\frac{1}{1-\alpha}}$.
 - (b) Assume that $f(\hat{x}) = \hat{x}$. In terms of L and α describe the set of x such that fixed point iteration is guaranteed to converge to \hat{x} . Consider $\alpha < 1, \alpha = 1$, and $\alpha > 1$.
- 6. Consider solving the matrix system Ux = y where $U = (u_{ij})$ is a $n \times n$ upper triangular matrix by the following back-substitution algorithm:

for i = n : -1 : 1for j = i + 1 : n $y_i = y_i - u_{ij} * x_j$ end $x_i = \frac{y_i}{u_{ii}}$ end

Calculate the number of multiplications and divisions required to perform the above algorithm.

7. Consider the Initial Value Problem, $y'(t) = f(t, y(t)), a \leq t \leq b, y(a) = y_0$. Let f satisfy a Lipschitz condition in y given by $|f(t, x) - f(t, y)| \leq L|x - y|$, where L is a constant. For i = 0, 1, ..., n, let the solution $y(t_i)$ and its approximation y_i generated by Euler's method satisfy respectively $y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i)$ and $y_{i+1} = y_i + hf(t_i, y_i)$, where ξ_i is some point in the interval $[t_i, t_{i+1}], a = t_0, t_1, ..., t_n = b$ is a discrete set of equally spaced points with $t_i = a + ih$ and stepsize $h = \frac{b-a}{n}$. Moreover, if y''(t) exists and is continuous for $a \leq t \leq b$ and that $|y''(t)| \leq M$, then prove that for each i = 0, 1, ..., n:

$$|y_i - y(t_i)| \le \frac{Mh}{2L} \left[e^{L(b-a)} - 1 \right].$$