Numerical Analysis. Preliminary Exam August 2015. Closed book. Closed notes. No phones or calculators. Solve any 5 problems. Circle the numbers of 5 problems to be graded.

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

- 1. Let A be $n \times n$ strictly diagonally dominant matrix, i.e. $\sum_{j=1}^{n} |a_{ij}| < |a_{ii}|$ for i = 1, ..., n. Prove that Jacobi method for solving Ax = b converges from any initial vector.
- 2. Consider the function $g(x) = e^{-x}$.
 - (a) Show that g(x) has an unique fixed point $z \in (-\infty, \infty)$.
 - (b) Prove that g is a contraction on $[\ln 1.1, \ln 3]$.
 - (c) Prove that $g: [\ln 1.1, \ln 3] \rightarrow [\ln 1.1, \ln 3]$
 - (d) Prove that $x_{t+1} = g(x_t)$ converges to the unique fixed point $z \in (-\infty, \infty)$ for any $x_0 \in (-\infty, \infty)$.

3. Let
$$\int_0^1 f(x) \, dx \approx \sum_{i=0}^{N-1} f(x_i)h$$
 where $x_i = ih$ and $h = \frac{1}{N}$. Suppose that $f \in C^1[0,1]$. Prove that $\left| \int_0^1 f(x) \, dx - \sum_{i=0}^{N-1} f(x_i) \, h \right| \le \frac{h}{2} \max_{0 \le x \le 1} |f'(x)|.$

- 4. Use the first and second order optimality conditions to find all the local constrained minima and maxima of $f(x) = x_1 x_2 x_3$ such that $x_1 + x_2 + x_3 = 3$.
- 5. (a) Write down a polynomial P(x) of the lowest degree, but not a spline, satisfying P(1) = P(2) = P(50) = 10 and P(0) = 3.
 - (b) Evaluate P(-1).
- 6. Let s(x) denote the complete spline of f(x) on the interval [a, b] with knots $a = x_0 < \cdots < x_n = b$; thus s'(a) = f'(a) and s'(b) = f'(b). Set e(x) = f(x) - s(x).
 - (a) Integrate twice by parts on each subinterval (x_{i-1}, x_i) to derive the (orthogonality) relation

$$\int_{a}^{b} e''(x)\phi(x)dx = 0,$$

for all continuous piecewise linear functions ϕ .

(b) Use (a) to prove the identity (Pythagoras equality)

$$\int_{a}^{b} \left| f''(x) \right|^{2} dx = \int_{a}^{b} \left| s''(x) \right|^{2} dx + \int_{a}^{b} \left| f''(x) - s''(x) \right|^{2} dx.$$

7. Given the two-point boundary value problem

$$-u''(x) + \alpha u(x) = f(x), \quad 0 \le x \le 1, \alpha > 0,$$

 $u'(0) = A,$
 $u'(1) = B.$

- (a) Set up the finite element approximation for this problem, based on piecewise linear elements in equidistant points. Determine the convergence rate in an appropriate norm.
- (b) Explain whether $\alpha > 0$ is necessary for the convergence in part (a).