Numerical Analysis Preliminary Examination questions August 2019

<u>Instructions</u>: Closed book. NO CALCULATORS are allowed. This examination contains **seven** problems, each worth 20 points. Do any **five** of the seven problems. Show your work. Clearly indicate which **five** are to be graded.

PLEASE GRADE PROBLEMS: 1 2 3 4 5 6 7

- 1. Let x_i^* , $i \ge 0$ denote positive numbers on a computer. With a unit round-off error δ , $x_i^* = fl(x_i) = x_i (1+\epsilon_i)$ with $|\epsilon_i| \le \delta$, where x_i are positive exact numbers. Consider the expression $S = x_1 \cdot x_2 \cdot x_3 + x_4 \cdot x_5 \cdot x_6$. Let S^* be the floating point approximation of S. Prove that $\frac{S^*}{S} \le e^{6\delta}$.
- 2. Consider the sequence defined by $x_{n+1} = b + \epsilon h(h(x_n))$ for $n = 0, 1, 2, \ldots$, where $x_0 \in \mathbb{R}$ is given and $b, \epsilon \in \mathbb{R}$. Assume that,
 - (a) $\exists M > 0$ such that, $|h(x)| \leq M$ for all $x \in \mathbb{R}$ and,
 - (b) $\exists L > 0$ such that, $|h(v) h(w)| \le L|v w|$ for all $v, w \in \mathbb{R}$.

Prove that if $2ML|\epsilon| < 1$, then there is a unique $z \in \mathbb{R}$ such that $z = b + \epsilon h(h(z))$ and the sequence $\{x_n\}_{n=0}^{\infty}$ converges to this value z.

3. Perform a QR factorization of the matrix

$$\left(\begin{array}{rrr} 3 & 5 \\ 4 & 6 \end{array}\right)$$

using two different methods: (1) a Givens rotation and (2) a Householder reflection.

4. Let A be a $n \times n$ symmetric matrix with distinct eigenvalues and consider the function $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$

$$f(v_1, v_2) = \left(\frac{Av_1}{||Av_1||}, \frac{A\left(v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle}v_1\right)}{\left|\left|A\left(v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle}v_1\right)\right|\right|}\right)$$

Let $u_1, ..., u_n$ be unit eigenvectors of A with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.

- (a) Show that (u_i, u_j) is a fixed point of f if $i \neq j$.
- (b) For which pair (u_i, u_j) is this iteration attracting? Explain why.

- 5. Consider the integral $I(f) = \int_0^1 \sqrt{y} f(y) \, dy$. Let the quadrature approximation of I(f) be given by $Q_M(f) = \sum_{m=1}^M \omega_m f(y_m)$ where $\{(\omega_m, y_m)\}_{m=1}^M$ denotes the quadrature weight-node pairs.
 - (a) Let q be a polynomial for which Q_M is exact, i.e., $Q_M(q) = I(q)$. If $\omega_m \ge 0$ then show that

$$|I(f) - Q_M(f)| \le \frac{4}{3} \max_{x \in [0,1]} |f(x) - q(x)|.$$

Hint: Notice that $I(f) - Q_M(f) = I(f-q) + Q_M(q-f)$. Also, check that $\sum_{m=1}^{M} \omega_m = \int_0^1 \sqrt{y} \, dy = \frac{2}{3}$.

(b) If f is continuous and $Q_M(f)$ is the Gaussian quadrature with M nodes then use (a) to show that

$$\lim_{M \to \infty} Q_M(f) = I(f).$$

6. Consider the two-point boundary value problem:

$$-u'' + u = x$$
 in (0,1), with $u'(0) = u'(1) = 0.$ (1)

- (a) Write the finite difference approximation of (1) using *centered* differences on a uniform mesh with meshsize h. Write the matrix of the system.
- (b) Set up the finite element approximation for this problem, based on piecewise linear elements in equidistant points. State the convergence rate in an appropriate norm.
- 7. Let $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ and $\gamma > 0$ satisfy

$$||F(x) - F(y)|| \ge \gamma ||x - y||, \quad \forall x, y \in D$$

Show that F is invertible and its inverse $F^{-1}: F(D) \to D$ is Lipschitz continuous with constant $1/\gamma$.