Numerical Analysis Preliminary Examination questions January 2018

<u>Instructions</u>: Closed book. NO CALCULATORS are allowed. This examination contains **seven** problems, each worth 20 points. Do any **five** of the seven problems. Show your work. Clearly indicate which **five** are to be graded.

PLEASE GRADE PROBLEMS: 1 2 3 4 5 6 7

1. Let $f \in C^{1,\alpha}[x_0, x_1]$ be a C^1 function whose derivative f' is Hölder α with $0 < \alpha \leq 1$. Let p be the linear interpolant of f at x_0 and x_1 . If w(t) denotes the modulus of continuity of f', show the error estimate

$$|f(x) - p(x)| \le hw(h) \quad \forall x_0 < x < x_1,$$

where $h = x_1 - x_0$.

Hint: Express the differences $f(x) - f(x_0)$ and $f(x_1) - f(x_0)$, which appear when writing f(x) - p(x), in integral form and then combine them. Also recall from the definition of modulus of continuity which implies $|f(x) - f(y)| \le w(|x - y|)$.

- 2. Gauss Quadrature
 - (a) Derive the two point Gaussian integration formula for

$$I(f) = \int_{-1}^{1} f(x) \, dx.$$

- (b) Use this formula to approximate $I(x^2)$.
- 3. Let A be diagonalizable, and consider the power iteration sequence $w_{k+1} = Aw_k$ for an initial vector w_0 . Find the limit $\lim_{k\to\infty} \frac{w_k}{||w_k||}$ and show how this limit depends on the spectrum of A and the initial vector w_0 .
- 4. Describe an algorithm for finding the inverse of an $N \times N$ matrix which runs in $\mathcal{O}(N^3)$ time and justify the computation complexity.
- 5. Consider a minimization problem $f(x) = \frac{1}{2}x^T A x b^T x$, $x \in \mathbb{R}^n$ and A is symmetric positive definite.
 - (a) Prove that f(x) is minimized when Ax = b.
 - (b) Let x_0 be the starting point. Perform one step of steepest descent method with exact line search.
 - (c) Perform one step of both Jacobi and Gauss-Seidel iterative methods to solve Ax = b and compare the two methods.

- 6. Consider the Newton-Raphson method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
 - (a) Use the Newton-Raphson method to establish the following iterative formula $x_{n+1} = \frac{x_n^2 + 16}{2x_n}$ for n > 0 to find the square-root of 16.
 - (b) Show that if the sequence $\{x_n\}$ converges to the limit L = 4, then the convergence rate is quadratic. (Hint: Consider the error $e_n = x_n 4$.)
- 7. Consider the two-point boundary value problem:

$$-u'' + u = \sin(x) \quad \text{in } (0,1), \quad \text{with } u(0) = u(1) = 0.$$
(1)

- (a) Write the finite difference approximation of (1) using *centered* differences on a uniform mesh with meshsize h. Write the matrix of the system and examine how the equations would change if $u(0) = \alpha \neq 0$.
- (b) Set up the finite element approximation for this problem, based on piecewise linear elements in equidistant points. State the convergence rate in an appropriate norm.