Numerical Analysis Preliminary Examination questions August 2017

<u>Instructions</u>: Closed book. NO CALCULATORS are allowed. This examination contains **seven** problems, each worth 20 points. Do any **five** of the seven problems. Show your work. Clearly indicate which **five** are to be graded.

PLEASE GRADE PROBLEMS: 1 2 3 4 5 6 7

- 1. Consider a differentiable function $f : \mathbb{R} \to \mathbb{R}$ and let $x^* = fl(x)$ be the floating point approximation of x.
 - (a) Show that the relative error in function evaluation is given by:

$$\left|\frac{f(x) - f(x^*)}{f(x)}\right| \approx \kappa_f(x^*) \left|\frac{x - x^*}{x}\right|$$

where the condition number $\kappa_f(x^*) := \left| \frac{xf'(x^*)}{f(x)} \right|.$

(b) Use the definition of condition number in part (a) to show that the condition number of the product $f(x) \cdot g(x)$ of functions satisfies:

$$\kappa_{fg}(x) \le \kappa_f(x) + \kappa_g(x).$$

- 2. Suppose that a function g maps the interval [a, b] into itself and g satisfies a Lipschitz condition with a Lipshitz constant $0 \le \lambda < 1$, then
 - (a) Show that the sequence $x_{n+1} = g(x_n), n = 0, 1, ...$ (for any initial approximation $x_0 \in [a, b]$) converges to a unique fixed point ξ in [a, b].
 - (b) Moreover, prove the following error bound involved in using the sequence x_n to approximate ξ given by: $|x_n \xi| \le \frac{\lambda^n}{1 \lambda} |x_1 x_0| \quad \forall n \ge 1.$
- 3. Prove that Jacobi method for solving the linear system of equations Ax = b with strictly diagonally dominant matrix A converges with a linear rate.
- 4. (a) Explain how to find the natural cubic spline for n data points $(x_1, y_1), ..., (x_n, y_n)$ such that the resulting linear system Ax = b has a matrix A of size n-by-n.
 - (b) What is the largest number of nonzero elements in A?
 - (c) Suggest an appropriate numerical method to solve Ax = b.

- 5. (a) Give a formula for a second order approximation of the second derivative f''(x).
 - (b) Assume that f is four times continuously differentiable in a neighborhood of x and show that your approximation in part (a) is second order by deriving an appropriate upper bound on the error.
- 6. Consider applying the forward Euler method to solve the initial value problem, $x' = \lambda x$ with x(0) = 1 using a step size $h = t_{k+1} - t_k$.
 - (a) Write the formula for $x_{k+1} = x(t_{k+1})$ in terms of $x_k = x(t_k)$.
 - (b) For which values of h and λ will this method be stable?
 - (c) Repeat steps (a) and (b) for the backward Euler method.
- 7. (a) Derive the quadrature rule for approximating the integral $\int_{a}^{a+h} f(x) dx$ using the two nodes $x_1 = a$ and $x_2 = a + 2h/3$ such that the quadrature rule is exact for all polynomials up to the highest possible degree.
 - (b) Show that the quadrature rule above is exact on all polynomials of degree 2.
 - (c) Assume that the node $x_1 = a$ is fixed but you are allowed to change the node x_2 . Is $x_2 = a + 2h/3$ the choice for which the quadrature rule is exact for all polynomials up to the highest possible degree? Why or why not?