Preliminary Exam, Linear Analysis, January 2010 State any theorems that you use.

- 1. A subset S of a metric space (X, d) is called *perfect* if it is closed and every point of S is an accumulation point of S. Prove that if S is a nonempty perfect subset of a complete metric space, then S is uncountable. (Hint: Assume S is perfect and countable. Use Baire's theorem or the Nested sphere theorem to deduce a contradiction.)
- 2. Let X = C[0, 1] be the space of continuous function defined on [0, 1], with the norm $||f|| = \max_{0 \le t \le 1} |f(t)|$. For any $f \in X$, define

$$T(f) = f(1) - f(0).$$

- (a) Prove that T is a continuous linear functional on X.
- (b) Find the norm of T.
- 3. Let E be a Banach space, and let I be the identity operator on E. Suppose A is a bounded linear operator mapping E into itself, such that ||A|| < 1. Define S = I − A.
 (a) Show that S is invertible and

$$S^{-1} = \sum_{n=0}^{\infty} A^n.$$

(b) Prove that $||S^{-1}|| \le (1 - ||A||)^{-1}$.

4. Let l_2 be the linear space consisting of all infinite sequences $v = (x_1, x_2, \ldots)$ of real numbers x_1, x_2, \ldots satisfying the convergence condition $\sum_{k=1}^{\infty} x_k^2 < \infty$, equipped with the norm

$$||v|| = \left(\sum_{k=1}^{\infty} x_k^2\right)^{1/2}$$

Define the linear operator A mapping l_2 into itself by

$$A(x_1, x_2, x_3, \ldots) = (x_2 - x_1, x_3 - x_2, x_4 - x_3, \ldots).$$

Show that A is bounded and injective, but is not bounded below; that is, that we can find a sequence of vectors $\{v_n\}$ in l_2 with $||v_n|| = 1$ for all $n \ge 1$ and $||Av_n|| \to 0$ as $n \to \infty$. (Hint: For each $n \ge 1$ consider the sequence whose first n terms equal $1/\sqrt{n}$ and the rest of terms are zero.)