Linear Analysis Preliminary Exam

- (1) Let X be a complex Hilbert space, and let $T \in \mathcal{L}(X, X)$ denote the orthogonal projection onto a closed subspace $M \subseteq X$.
 - (a) Determine the kernel $N(T \lambda I)$ and the range $R(T \lambda I)$ of $T \lambda I$ for each $\lambda \in \mathbb{C}$.
 - (b) Find all $\lambda \in \mathbb{C}$ for which $T \lambda I$ has an inverse $(T \lambda I)^{-1}$ in $\mathcal{L}(X, X)$. Justify your answer.
 - (c) What is the spectrum of $T \lambda I$?
- (2) (a) State and prove Hölder's Inequality for a pair of vectors in \mathbb{R}^n .
 - (b) Under what conditions does it become an equality? Justify your answer.
 - (c) If \mathbb{R}^n is equipped with the norm

$$\|x\| = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

for some $p \ge 1$ what is the induced norm on the conjugate (dual) space?

- (3) (a) Prove Banach's Contraction Mapping Principle, also known as a fixed point theorem or also as the method of successive approximation: every contraction mapping A defined on a complete metric space R has a unique fixed point.
 - (b) Let X be a Banach space and let $L : X \to X$ be a bounded linear operator. Show that for any given b, there is a unique solution to the equation

$$x = Lx + b$$

if ||L|| < 1.

- (c) Are there situations with ||L|| > 1 for which there is still a unique solution to x = Lx + b? Explain your reasoning.
- (4) Define the adjoint of a bounded linear operator A that maps one Banach space E into another Banach space E_1 . Then prove that $||A^*|| = ||A||$, paying attention to the meanings implied in this relation.