Department of Mathematical Sciences George Mason University

Linear Analysis Preliminary Exam - January 2014

Instructions: This exam consists of four problems. You are to do all four of the problems. Closed books, closed notes. State any theorems that you use.

- 1. Define the function $f_p : \mathbb{R}^n \to \mathbb{R}$ for $n \ge 2$ by $f_p(x) = \sum_{k=1}^n |x_k|^p$.
 - (a) Show that for $0 , <math>d_a(x, y) = (f_p(x y))^{1/p}$ is not a metric on \mathbb{R}^n .
 - (b) Show that for $0 , <math>d_b(x, y) = f_p(x y)$ is a metric on \mathbb{R}^n .
 - (c) For p = 1/2 and n = 2 find and graph the unit ball $\{x \in \mathbb{R}^2 : d_b(x, 0) \leq 1\}$.
- 2. Let X be the space C[0,1] under the norm $\|\cdot\|_p$ for $1 \le p \le \infty$.
 - (b) Show that X is complete for $p = \infty$, but it is then not an inner product space.
 - (a) Show that X is an inner product space for p = 2, but it is then not complete.
- 3. (a) State the Hahn-Banach Theorem.
 - (b) Let X be a normed linear space, and let x_1 and x_2 be two points in X such that for every bounded linear functional f on X, $f(x_1) = f(x_2)$. Show that $x_1 = x_2$.
 - (c) Let X be a normed linear space, and let $x_0 \in X$, where $x_0 \neq 0$. Then there exists a bounded linear functional f on X such that $f(x_0) = ||x_0||$. For such an f, is it possible to make ||f|| > 1? Justify.
- 4. Consider the two linear spaces:

$$\ell^2 = \left\{ x = (x_1, x_2, \dots) : \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}$$

with norm $||x||_2 = (\sum_{k=1}^{\infty} |x_k|^2)^{1/2}$, and

$$\ell^{\infty} = \left\{ x = (x_1, x_2, \dots) : \sup_k |x_k| < \infty \right\}.$$

with norm $||x||_{\infty} = \sup_k |x_k|$. Fix $a \in \ell^2$. Define the function T on ℓ^2 by

$$(Tx)_j = \sum_{k=1}^j a_k x_k$$

- (a) Show that T is a continuous linear operator from ℓ^2 to ℓ^{∞} . Find the norm of T. Justify your answer.
- (b) Is T a continuous linear operator from ℓ^2 to ℓ^2 ? If so, find the norm. If not, prove that it is not.