Instructions: This exam is closed book, closed notes, no calculator or other electronic device. Do all of the following four questions.

- 1. (a) Define a linearly independent set in a Hilbert space. Define an orthogonal set in a Hilbert space.
 - (b) Prove that in a Hilbert space, an orthogonal set is a linearly independent set.
 - (c) Given an example of a Hilbert space and a linearly independent set which is not an orthogonal set.
- 2. Let $C^1[a, b]$ denote the space of continuously differentiable functions under the norm $||f|| = \max_{x \in [a,b]} \{|f(x)|, |f'(x)|\}$. Let C[a, b] denote the space of continuous functions under the supremum norm.
 - (a) Define a linear operator. Consider the mapping $\frac{d}{dx} : C^1[a, b] \to C[a, b]$. Prove that the mapping $\frac{d}{dx}$ is a linear operator on $C^1[a, b]$.
 - (b) Define a completely continuous (compact) operator. Prove that the mapping $\frac{d}{dx}$ defined in (a) is a completely continuous (compact) operator. Hint: Use the following theorem:

Theorem 1 (Arzela-Ascoli). For each n let $f_n(x)$ be a continuous function on the interval $[a,b] \subseteq \mathbb{R}$. If the sequence $\{f_n\}$ is both uniformly continuous and equicontinuous, then there is a subsequence $\{f_{n_k}\}$ which converges uniformly.

- 3. (a) (i) Define a continuous linear functional on a normed linear space. (ii) Define the norm of a linear functional.
 - (b) Let C[a, b] denote the space of continuous functions under the supremum norm. Let $S : C[0, 1] \to \mathbb{R}$ be a functional that assigns to each $f \in C[0, 1]$ the real number

$$Sf = \frac{f(0) + 4f(1/2) + f(1)}{6}$$

Show that S is a continuous linear functional. Find the norm of S.

- 4. Consider a linear map $A: X \to Y$ between two normed spaces X and Y.
 - (a) (i) Define a bounded operator. (ii) Define a continuous operator. (iii) Prove that A is bounded if and only if A is continuous.
 - (b) Suppose that Y is a Banach space and that A is continuous when restricted to some dense subset $D \subseteq X$. Prove that there is a unique continuous extension of A to X with the same norm.
 - (c) Provide an example to show that the assumption that Y is a Banach space in (b) is indeed necessary.