Linear Analysis Preliminary Exam

This exam consists of 4 questions.

- 1. Let (X, d) be a metric space. For a bounded set $S \subset X$, the diameter of S is defined as $\operatorname{diam}(S) = \sup\{d(x, y) : x, y \in S\}$. Prove, directly from the definitions, that a decreasing sequence of closed sets $C_n, n = 1, 2, \ldots$ in a complete metric space has a nonempty intersection if $\lim_{n \to \infty} \operatorname{diam} C_n = 0$.
- 2. A function f is said to be continuously differentiable if both f and its derivative f' are continuous. Let X be the space of continuously differentiable real-valued functions on [-1,1], with the norm $\|\cdot\|$ defined by

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}$$

where

$$||g||_{\infty} = \max\{|g(x)| : x \in [-1, 1]\}.$$

Define a linear functional T on X as follows:

$$T(f) = f'(0)$$

Prove that T is bounded and find its norm. (For the second part, you may want to consider the functions $f_n(x) = \frac{1}{n}\sin(nx)$ for n large.)

- 3. Let l^2 be the Hilbert space of complex-valued sequences $\{x_n\}_{n=1}^{\infty}$ with the property that $\sum_{n=1}^{\infty}|x_n|^2<\infty$, with norm given by $\|x\|^2=\sum_{n=1}^{\infty}|x_n|^2$ and inner product given by $\langle x,y\rangle=\sum_{n=1}^{\infty}x_n\overline{y_n}$. Let $\lambda\in\mathbb{C},0<|\lambda|<1$, be fixed and define the operator T on l^2 by $Tx=\{\lambda^n\,x_n\}_{n=1}^{\infty}$.
 - (a) Show that T is a bounded operator with $||T|| = |\lambda|$.
 - (b) Show that T is injective but that the operator T^{-1} : $Range(T) \to l^2$ is not bounded.
 - (c) Show that T is not surjective, but that Range(T) is dense in l^2 .
- 4. Let X be the space of real-valued continuous functions on [0,1] equipped with the norm

$$||f|| = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}.$$

Define the operator A on X by

$$Af(x) = \int_0^1 K(x, y) f(y) \, dy$$

where K(x,y) is a function continuous on the square $[0,1] \times [0,1]$. Prove that A is a bounded linear operator on X with respect to the norm $\|\cdot\|$.