Linear Analysis Preliminary Exam

This exam consists of 4 questions.

- (1) Let (X, d) be a separable metric space, and Y any subspace of X. Prove that Y with the subspace topology is also separable.
- (2) Let *H* be a (complex) Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. Let $a \in H$ be a fixed element of *H*. Prove that $T(x) = \langle x, a \rangle$ is a continuous linear functional on *H* and find its norm. Is every continuous linear functional on *H* of this form?
- (3) Consider the operator A defined on $L^2[0,1]$ by $Af(x) = \int_0^x f(t) dt$.
 - (a) Show that $Af \in C[0, 1]$ whenever $f \in L^2[0, 1]$.
 - (b) Prove that A is a bounded linear operator on $L^2[0,1]$ (where $L^2[0,1]$ is equipped with the usual norm $||f||_2^2 = \int_0^1 |f(x)|^2 dx$). (Hint: You need not prove that A is linear.)
 - (c) Find A^* .
- (4) Suppose that $\{x_n\}_{n=1}^{\infty}$ is an orthonormal system in a real Hilbert space H, x a vector in H and $\{a_n\}_{n=1}^{N}$ a finite sequence of real numbers.
 - (a) Show that

$$\left\|x - \sum_{n=1}^{N} a_n x_n\right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, x_n \rangle|^2 + \sum_{n=1}^{N} |a_n - \langle x, x_n \rangle|^2.$$

(b) Prove the following two identities as immediate consequences of the identity in part (a).

(i)
$$\left\|\sum_{n=1}^{N} a_n x_n\right\|^2 = \sum_{n=1}^{N} |a_n|^2$$

(ii) $\left\|x - \sum_{n=1}^{N} \langle x, x_n \rangle x_n\right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, x_n \rangle|^2$

(c) Explain why the result in part (a) is sometimes called the Best Approximation Lemma.