Linear Analysis Preliminary Exam

This exam consists of 4 questions.

- (1) Let (X, d) be a complete metric space and $T: X \to X$ a mapping satisfying $d(Tx, Ty) \leq \lambda d(x, y)$ for all $x, y \in X$ where $0 < \lambda < 1$ is some constant.
 - (a) Prove that for any fixed $x_0 \in X$, the sequence $\{T^n x_0\}$ converges to a fixed point c of T, i.e. a point c such that T(c) = c.
 - (b) Prove that T has only one fixed point.
- (2) Let X = C[-1, 1] be the Banach space of real-valued continuous functions on [-1, 1] with the sup norm, i. e. $||f|| = \max\{|f(x)|: -1 \le x \le 1\}, f \in X$. Define a linear functional $T: X \to \mathbb{R}$ by

$$Tf = \int_{-1}^{1} x^3 f(x) \, dx.$$

Prove that T is bounded and find the norm of T.

- (3) Let P be a nonzero bounded linear operator on a Hilbert space H with inner product $\langle \cdot, \cdot \rangle$. Suppose that P is (a) self-adjoint and (b) satisfies $P^2 = P$.
 - (a) Prove that $||Px|| \le ||x||$ for all $x \in H$ and that ||P|| = 1.
 - (b) Prove that each $x \in H$ can be written uniquely as $x = x_0 + x_1$ where $x_0 \in Range(P)$ and $x_1 \in Range(P)^{\perp}$. (In other words, that P is an orthogonal projector onto its range.)
- (4) Let *H* be a real Hilbert space and $\{x_k : k = 1, 2, ...\}$ an orthonormal basis of *H*. Let *n* be a positive integer and let c_1, \dots, c_n be arbitrary real numbers. Let

$$y = \sum_{k=1}^{n} \langle x, x_k \rangle x_k$$
 and $z = \sum_{k=1}^{n} c_k x_k$.

Prove an identity relating $||x - y||^2$ and $||x - z||^2$, and conclude that $||x - y||^2 \le ||x - z||^2$.