Linear Analysis Preliminary Exam

This exam consists of 5 questions.

- (1) Let \mathbb{R} denote the set of real numbers, and for $x, y \in \mathbb{R}$, d(x, y) = |x-y|. Then we know that (\mathbb{R}, d) is a complete metric space with the "usual" metric. Show that completeness is not preserved by homeomorphism, by finding a non-complete metric space (M, d^*) homeomorphic to (\mathbb{R}, d) and an onto homeomorphism, $h : \mathbb{R} \to M$.
- (2) (a) Let C[0,1] denote the space of all continuous real-valued functions on [0,1] equipped with the maximum norm $||f||_{\infty} = \max\{|f(x)| : x \in [0,1]\}$. Show that $(C[0,1], ||\cdot||_{\infty})$ is not a Hilbert space, i.e., show that it is impossible to define a scalar product (\cdot, \cdot) on C[0,1] such that $||f||_{\infty} = (f,f)^{1/2}$ for all $f \in C[0,1]$.
 - (b) Define a scalar product on C[0,1] (equipped with the usual addition and scalar multiplication of functions) and show that with this scalar product, C[0,1] becomes a Euclidean space. Then show that the so-defined space is not complete.
- (3) Let M be a finite-dimensional subspace of a normed linear space X. Show that there is a closed subspace $N \subset X$ with $X = M \oplus N$. (Hint: Given a basis x_1, \ldots, x_n of M, find $f_1, \ldots, f_n \in X^*$ with $f_i(x_j) = \delta_{i,j}$.)
- (4) Let X = C[1, 4] be the space of real-valued continuous functions on [1, 4] equipped with the maximum norm, $||f||_{\infty} = \max\{|f(x)| : x \in [1, 4]\}$. For $f \in X$, define

$$T(f) = \int_{1}^{2} f(x) \, dx - \int_{3}^{4} f(x) \, dx$$

and S(f) = f(2). Determine whether S and T are continuous. If a functional is continuous, find its norm; if not explain why not.

(5) Let K(x, y) be a fixed function of two variables, continuous on the square $[0, 1] \times [0, 1]$, and let $A \in \mathcal{L}(L^2[0, 1], L^2[0, 1])$ be the operator defined by

$$Af(x) = \int_0^1 K(x, y) f(y) \, dy.$$

Prove that if $\{f_n\}_{n=1}^{\infty}$ satisfies $||f_n||_2 \leq 1$ for all n = 1, 2, ..., then the set $\{Af_n\}_{n=1}^{\infty}$ is equicontinuous. This means that given $\epsilon > 0$, there is a $\delta > 0$ such that if $x, y \in [0, 1]$ are such that $|x - y| < \delta$, then $|Af_n(x) - Af_n(y)| < \epsilon$ for all n = 1, 2, ...