Department of Mathematical Sciences

Algebra Preliminary Exam, January 2015

This exam consists of 5 questions.

- 1. Let $D_{15} = \{a^i b^j : a^{15} = e, b^2 = e, ba = a^{-1}b\}$ be the dihedral group of degree 15. How many elements does D_{15} have, and what are the orders of the elements of D_{15} ? Justify your answer.
- 2. Show that any group of order 77 has a proper normal subgroup.
- 3. Recall that a *Euclidean ring* is an integral domain R equipped with a function $\phi : R \setminus \{0\} \to \mathbb{N}$ such that for all $a, b \in R$ with $a \neq 0$ there are $q, r \in R$ such that b = qa + r with r = 0 or $0 < \phi(r) < \phi(a)$.
 - (a) Show that every Euclidean ring is a PID (principal ideal domain).
 - (b) Let $R = \mathbb{Z}[\gamma]$, where

$$\gamma = \frac{1 + \sqrt{-3}}{2} \in \mathbb{C}.$$

Using $\phi(a+b\gamma) := |a+b\gamma|^2 = a^2 + ab + b^2$ for integers a and b, show that R is a Euclidean subring of \mathbb{C} and thereby a PID. Is R is a UFD (unique factorization domain)? Justify your answer.

- 4. Let k be a field and R = k[X, Y] the polynomial ring over k in two variables X and Y. Without using that R is a UFD, prove explicitly that R is not a PID (*Hint:* You may want to consider the total degree of a polynomial in two variables.)
- 5. For an algebraic $\alpha \in \mathbb{C}$ let $R = \mathbb{Q}[\alpha]$ be the smallest subring of \mathbb{C} that contains the rationals \mathbb{Q} and α . Prove that R is a field, that is $R = \mathbb{Q}(\alpha)$. For $\alpha = \sqrt{2} + \sqrt{3}$ determine $[R : \mathbb{Q}]$, the dimension of R as a \mathbb{Q} -vector space.