Algebra Preliminary Exam

This exam consists of 5 questions.

- (1) Let K be a field. Define $K^* = (K \setminus \{0\}, \cdot)$, the nonzero elements of K.
 - (a) Show that K^* under the operation of multiplication is an abelian group.
 - (b) Show that none of the groups \mathbb{Q}^* , \mathbb{R}^* , and \mathbb{C}^* are isomorphic.
- (2) For a group G let $N_G = \langle x^{-1}y^{-1}xy : x, y \in G \rangle$ be the commutator subgroup of G.
 - (a) Show that N_G is normal in G.
 - (b) Show that G/N_G is abelian.
 - (c) Give an example of an infinite group G such that G/N_G is finite.
- (3) Let $R = \mathbb{Z}[\sqrt{-2}] = \{m + n\sqrt{-2} : m, n \in \mathbb{Z}\}.$
 - (a) Show that R is a principal ideal domain. (*Hint:* Show first that R is a Euclidean ring with $\phi(a+\sqrt{2}b)=a^2+2b^2$.)
 - (b) What are the units of R?
- (4) For $n \in \mathbb{N}$ let $f_n(X) \in \mathbb{Z}[X]$ be given by

$$f_n(X) = \frac{X^n - 1}{X - 1} = X^{n-1} + X^{n-2} + \dots + X + 1.$$

Show that $f_n(X)$ is irreducible over \mathbb{Z} if and only if n is a prime number.

- (5) Let F be the field $F = \mathbb{Q}(i, \sqrt{3})$.
 - (a) Find $[F:\mathbb{Q}]$, the degree of the field extension F over \mathbb{Q} .
 - (b) Find a basis for F over \mathbb{Q} .