Department of Mathematical Sciences

George Mason University

Algebra Preliminary Exam

August, 2010

This exam consists of 5 questions.

(1) Let p be a prime number and \mathbb{Z}_p the additive group of integers modulo p.

- (a) Show that $|Aut(\mathbb{Z}_p)| = p 1$.
- (b) Use this to prove *Fermat's Little Theorem:* $a^{p-1} \equiv 1 \mod p$ for each nonzero $a \in \mathbb{Z}_p$.
- (2) Let G be a finite group and N a normal p-Sylow subgroup of G. If $f: G \to G$ is a group endomorphism, show that f(N) is a subgroup of N. (*Hint*: First show that f(N) is contained in a p-Sylow subgroup.)
- (3) Let R be the ring of all continuous functions $f : [a, b] \to \mathbb{R}$. For $c \in [a, b]$ let $I_c = \{f \in R : f(c) = 0\}$.
 - (a) Show that I_c is a maximal ideal of R for each c.
 - (b) Must every maximal ideal of R be of the form I_c for some c?
- (4) Let R be a commutative ring. Let

 $\mathcal{N}_R = \{ x \in R : x^n = 0 \text{ for some } n \in \mathbb{N} \}.$

- (a) Show that \mathcal{N}_R is an ideal of R.
- (b) Recall that an element $x \in R$ is *nilpotent* if $x^n = 0$ for some $n \in \mathbb{N}$. Show that the ring R/\mathcal{N}_R has no nilpotent elements.
- (5) Find the degree of the following extension fields over the rationals \mathbb{Q} . Justify your answer.
 - (a) The field $F_1 = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (b) The smallest field F_2 containing all roots of the polynomial $x^2 6$.