Algebra Preliminary Exam

This exam consists of 5 questions.

- (1) Prove that a group of order 5 or less is abelian.
- (2) Let G be a nonabelian group of order 36. Show that G must have more than one Sylow 2-subgroup or more than one Sylow 3-subgroup.
- (3) Let R be a commutative ring.
 - (a) Show that every maximal ideal is prime.
 - (b) If further R is a PID, show that every nonzero prime ideal is maximal.
- (4) Let $R = \mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} : m, n \in \mathbb{Z}\}$. Show that R is a subring of \mathbb{R} . Show that $m + n\sqrt{3}$ is a unit if, and only if, m^2 equals either $3n^2 1$ or $3n^2 + 1$.
- (5) Let \mathbb{C}^* be the multiplicative group of nonzero complex numbers and let $N \subseteq \mathbb{C}^*$ be the set of complex numbers of absolute value 1 (that is, $a + bi \in N$ if, and only if, $a^2 + b^2 = 1$.) Prove that N is a subgroup of \mathbb{C}^* and that \mathbb{C}^*/N is isomorphic to (\mathbb{R}^+, \cdot) , the multiplicative group of the positive real numbers.