Department of Mathematical Sciences

Algebra Preliminary Exam, January 2017

This exam consists of 5 questions, all of equal weight.

- 1. Let p and q be two distinct odd primes. Let $D_{pq} = \{a^i b^j : a^{pq} = e, b^2 = e, ba = a^{-1}b\}$ be the dihedral group of degree pq. What are the possible orders of an element of D_{pq} ? Justify your answer.
- 2. Let H and K be finite normal subgroups of G of relative prime orders such that G = HK. Show that $G \cong H \times K$,
- 3. Let $R = \mathbb{Z}[\sqrt{2}]$ be the smallest subring of \mathbb{R} containing \mathbb{Z} and $\sqrt{2}$.
 - (a) Show explicitly that $R = \{m + n\sqrt{2} : n, m \in \mathbb{Z}\}$ as a set.
 - (b) Show that the norm $N(m + n\sqrt{2}) = m^2 2n^2$ is well defined and respects multiplication; N(xy) = N(x)N(y) for any $x, y \in R$.
 - (c) Show that an element $x \in R$ is a unit if and only if $N(x) = \pm 1$. (*Hint:* factor $m^2 2n^2$ over the reals.)
- 4. Let $R = \mathbb{C}[X, Y]$, the polynomial ring over the complex numbers in two variables. Show that $I = (Y X^2)$ is a prime ideal of R but not maximal. Find two maximal ideals of R that contain I, and show that the ideals you find are indeed maximal and contain I.
- 5. Let $F = \mathbb{Q}(\sqrt{2}, i)$ be the smallest subfield of \mathbb{C} that contains $\mathbb{Q}, \sqrt{2}$ and the complex number i. Compute $[F : \mathbb{Q}]$, the degree of the field extension F over \mathbb{Q} . Justify your answer.