Department of Mathematical Sciences

Algebra Preliminary Exam, January 2014

This exam consists of 5 questions.

- 1. Let H and K be subgroups of a given group G. Prove that $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G if either H or K is normal in G. For G finite, determine the order of HK. Prove your answer.
- 2. Let G be a nonabelian group of order 36. Show that G must have more than one Sylow 2-subgroup or more than one Sylow 3-subgroup.
- 3. Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials over the rationals whose constant term is an integer. Then R is an integral domain.
 - (a) Show that the only units of R are ± 1 .
 - (b) Show that x can be factored into ab, where neither a nor b is a unit, in infinitely many ways. (Hence R is not a UFD.)
- 4. Let R be a commutative ring. Let

 $\mathcal{N}_R = \{ x \in R : x^n = 0 \text{ for some } n \in \mathbb{N} \}.$

- (a) Show that \mathcal{N}_R is an ideal of R.
- (b) Recall that an element $x \in R$ is *nilpotent* if $x^n = 0$ for some $n \in \mathbb{N}$. Show that the ring R/\mathcal{N}_R has no nonzero nilpotent elements.
- 5. Let R be a integral domain containing the field K as a subring. If R is finite dimensional over K as a vector space, show that R is indeed a field. (Hint: For any $a \in R$ there is a linear relation over K on the set $\{1, a, a^2, ...\}$ why?)