Department of Mathematical Sciences

Algebra Preliminary Exam, January 2018

This exam consists of 5 questions, all of equal weight.

- (1) For $n \ge 3$ the dihedral group D_n of degree n is given by $D_n = \langle a^i b^j : a^n = e, b^2 = e, ba = a^{-1}b \rangle$. Determine with proof those n for which D_n is isomorphic to the symmetric group S_n , that is $D_n \cong S_n$.
- (2) Fix a prime p and a positive integer k. For groups G_1, \ldots, G_k the Cartesian product $G_1 \times \cdots \times G_k$ is naturally a group by applying the operations component-wise.
 - (a) If all the groups G_1, \ldots, G_k are finite and H_i is a *p*-Sylow subgroup of G_i for each *i*, show that $H_1 \times \cdots \times H_k$ is *p*-Sylow subgroup of $G_1 \times \cdots \times G_k$.
 - (b) Use a Sylow Theorem to show that any *p*-Sylow subgroup of the Cartesian product $G_1 \times \cdots \times G_k$ has the form from above: $H_1 \times \cdots \times H_k$ where H_i is a *p*-Sylow subgroup of G_i for each *i*.
- (3) Let R be a principal ideal domain and x be a nonzero element of R. Let $I = \langle x \rangle$ be the ideal in R generated by x. Then I is a maximal ideal in R if and only if x is irreducible in R.
- (4) Let $\mathbb{Q}[\sqrt[3]{3}] = \{a + b\sqrt[3]{3} + c(\sqrt[3]{3})^2 : a, b, c \in \mathbb{Q}\}$ be a ring under the multiplication and addition operations inherited from the real numbers. Let $f : \mathbb{Q}[x] \to \mathbb{Q}[\sqrt[3]{3}]$ be given by the extension of $1 \mapsto 1, x \mapsto \sqrt[3]{3}$ to a ring homomorphism on all of $\mathbb{Q}[x]$.
 - (a) What is the kernel of this map? What is the image?
 - (b) What can you conclude, based on the First Isomorphism Theorem for Rings?
 - (c) The ring $\mathbb{Q}[\sqrt[3]{3}]$ forms a field. What conclusion can be made about the ideal you found in part (a)?
- (5) Let $n \in \mathbb{Z}$ and let $f(x) = x^3 nx^2 (n+3)x 1$.
 - (a) Show that f(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) Show that if r is a root of f(x) then -1/(1+r) is also a root of f(x).
 - (c) Compute the smallest field extension of \mathbb{Q} where f(x) factors completely into linear factors.