Department of Mathematical Sciences

Algebra Preliminary Exam, August 2015

This exam consists of 5 questions.

- 1. Prove that every element of the symmetric group S_n of degree $n \ge 2$ is a product of 2-cycles of the form (1, k).
- 2. Let G be a group of order |G| = pq where p > q are distinct primes and q does not divide p-1. Show that G is cyclic.
- 3. For integers $n \ge 2$ determine all the prime ideals of the factor ring $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Is every prime ideal of \mathbb{Z}_n also maximal? Justify your answer.
- 4. Let R be a commutative ring and I_1, \ldots, I_k ideals of R. Let $\phi : R \to R/I_1 \times \cdots \times R/I_k$ be the natural diagonal ring homomorphism given by $\phi(x) = (x + I_1, \ldots, x + I_k)$.
 - (a) Show that the kernel is given by $\ker(\phi) = I_1 \cap \cdots \cap I_k$.
 - (b) Show that ϕ is surjective if and only if $I_i + I_j = R$ for every $i \neq j$, and in this case prove the *Chinese Reminder Theorem* for rings: $R/(I_1 \cap \cdots \cap I_k) \cong R/I_1 \times \cdots \times R/I_k$.
- 5. Recall that for a field k and elements a_1, \ldots, a_n in a field K that contains k, then the field extension $k(a_1, \ldots, a_n)$ of k denotes the smallest subfield of K that contains all of k and the elements a_1, \ldots, a_n .

For $\alpha, \beta \in \mathbb{Q} \setminus \{0\}$, is it always the case for the following field extensions of \mathbb{Q} that $\mathbb{Q}(\sqrt{\alpha}, \sqrt{\beta}) = \mathbb{Q}(\sqrt{\alpha} + \sqrt{\beta})$? Justify your answer.