Algebra Preliminary Exam, August 2018

This exam consists of 5 questions.

- 1. Let r, n be integers with $1 < r \le n$ and let S_n denote the symmetric group on n letters. Let i_1, \ldots, i_r be distinct integers with $1 \le i_j \le n$ for all j. Let $\tau \in S_n$ and consider the r-cycle $\sigma := (i_1 i_2 \cdots i_r) \in S_n$. Prove that $\tau \sigma \tau^{-1}$ is the r-cycle $(\tau(i_1)\tau(i_2)\cdots\tau(i_r))$.
- 2. Let G be an abelian group and let H be the subset of G consisting of those elements that have finite order.
 - (a) Prove that H is a subgroup of G.
 - (b) Prove that any nonidentity element of the quotient group G/H has infinite order as an element of G/H.
 - (c) Give an example to show that if one removes the assumption of abelianness from G, then H is not necessarily a group.
- 3. Let R be a unique factorization domain. Let $a, b \in R$, and let d be a greatest common divisor of a and b. Let I := (a, b), the ideal generated by these elements, and let J be the intersection of all principal ideals that contain I.
 - (a) Prove that J = (d).
 - (b) Give an example to show that I need not equal J.
- 4. Let $B = \mathbb{R}[t]$ and $A = \{f \in B \mid f(1) = f(-1)\}.$
 - (a) Prove that A is a subring of B.
 - (b) Prove that any polynomial in A that is of degree 2 or 3 is irreducible.
 - (c) On the other hand, prove that the elements $\alpha = t^2$, $\beta = t^3 t$ are not prime as elements of A. [Hint: Find two nonequivalent factorizations of the element $t^6 2t^4 + t^2$ of A.]
- 5. Let K be a field, let t be an indeterminate over K. Let $h = h(t) \in K[t] \setminus K$. Prove that h is transcendental over K.