Algebra Preliminary Exam, August 2013

This exam consists of 5 questions.

- 1. Let $\varepsilon: (\mathbb{R}, +) \to (\mathbb{C}^*, \cdot)$ be defined by $\varepsilon(\alpha) := \cos(2\pi\alpha) + i\sin(2\pi\alpha) = e^{2\pi\alpha i}$ (with all angles given in radians and $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$). Show that ε is a group homomorphism. What is its image? What is its kernel? What two groups can you conclude are isomorphic to each other?
- 2. Let G be a non-abelian group of order 55.
 - (a) How many subgroups are there of each possible order?
 - (b) How many elements are there of each possible order?
- 3. Let R be a commutative ring with 1, and let X be the set of prime ideals of R. For any ideal I of R, let $V(I) := \{P \in X \mid I \subseteq P\}$.
 - (a) Let $\{I_{\alpha}\}_{{\alpha}\in S}$ be a family of ideals of R. Show that $V(\sum_{\alpha}I_{\alpha})=\cap_{\alpha}V(I_{\alpha})$
 - (b) Let P be a prime ideal. Suppose $IJ\subseteq P$, where $I,\ J$ are ideals. Show that $I\subseteq P$ or $J\subseteq P$.
 - (c) Show that $V(IJ) = V(I) \cup V(J)$ for any pair I, J of ideals of R.
- 4. (a) Let $f(x), g(x) \in \mathbb{R}[x]$ be relatively prime and of positive degree (where for the purposes of this problem, $\deg 0 = -\infty$), and let m(x) be a polynomial with $\deg m < \deg f + \deg g$. Show that there is a pair of polynomials $n(x), p(x) \in \mathbb{R}[x]$ with $\deg n < \deg f$, $\deg p < \deg g$, and

$$\frac{m(x)}{f(x)g(x)} = \frac{n(x)}{f(x)} + \frac{p(x)}{g(x)}.$$

(b) Use part (a) to show that given any k-tuple a_1, \ldots, a_k of distinct real numbers, there is a k-tuple A_1, \ldots, A_k of (not necessarily distinct) real numbers such that in $\mathbb{R}[x]$,

$$\frac{1}{(x-a_1)(x-a_2)\cdots(x-a_k)} = \frac{A_1}{x-a_1} + \frac{A_2}{x-a_2} + \cdots + \frac{A_k}{x-a_k}.$$

- 5. Let F be a field and $h(x) \in F[x]$.
 - (a) Show that if $h(x) \neq 0$, the number of roots of h is bounded above by deg h.
 - (b) If F is infinite and h(a) = 0 for all $a \in F$, prove that h(x) is the zero polynomial.
 - (c) Give an example of a finite field F and $0 \neq h(x) \in F[x]$ such that h(a) = 0 for all $a \in F$.