Algebra Preliminary Exam

This exam consists of 5 questions.

- (1) Prove that any finite group G is a subgroup of the symmetric group S_n for some n.
- (2) Let G_1 and G_2 be two finite groups. If H_i is a p-Sylow subgroup of G_i for i = 1, 2, show that $H_1 \times H_2$ is a p-Sylow subgroup of $G_1 \times G_2$. Use the first part and the Sylow Theorems to prove that every p-Sylow subgroup of $G_1 \times G_2$ has the form $H_1 \times H_2$ where H_i is a p-Sylow subgroup of G_i for i = 1, 2.
- (3) Let R be a ring. Suppose that $e \in R$ is a central idempotent, that is ea = ae for all $a \in R$ and that $e^2 = e$.
 - 1. Prove that e' = 1 e is also a central idempotent of R.
 - 2. Show that both $R_1 = Re$ and $R_2 = Re'$ are rings with identities e and e' respectively.
 - 3. Show that $R \cong R_1 \times R_2$ as rings.
- (4) Let R be a commutative ring. If R is a field, prove that R[X] has infinitely many irreducible elements. For what general class of rings does the proof hold and why?
- (5) Let $R = \mathbb{Q}[\sqrt[3]{3}] = \{a + b\sqrt[3]{3} + c\sqrt[3]{9} : a, b, c \in \mathbb{Q}\}$. Show that for any $r \in R$ there is a polynomial $f(X) \in \mathbb{Z}[X]$ such that f(r) = 0.