Department of Mathematical Sciences

Algebra Preliminary Exam, August 2019

This exam consists of 5 questions, all of equal weight.

- 1. Let $\phi: G \to H$ be a group homomorphism. Prove:
 - (a) $\ker(\phi) \triangleleft G$,
 - (b) $\phi(G) \leq H$,
 - (c) $G/\ker(\phi) \cong \phi(G)$ as groups.
- 2. Show that any group of order 99 is abelian.
- 3. Let R be a commutative ring with identity, I an ideal of R, and $rad(I) = \{r \in R : r^n \in I \text{ for some } n > 0\}.$
 - (a) Prove that rad(I) is an ideal of R containing I.
 - (b) Prove that the ideal $\operatorname{rad}(I)/I$ of R/I is equal to the set of nilpotent elements of R/I (elements $x \in R/I$ such that $x^n = 0$ for some $n \ge 0$).
- 4. Let R be an integral domain that is not a field. Let S = R[x] be the ring of polynomials in x with coefficients in R. Let $r \in R$ be a nonzero element that is not a unit. Prove that the ideal (r, x) of S is not principal. Conclude that S is not a PID.
- 5. Let $R = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ be the smallest subring of \mathbb{R} containing \mathbb{Q} and $\sqrt{2} + \sqrt{3}$. Prove that R is a field, and determine $[R : \mathbb{Q}]$, the dimension of R as a \mathbb{Q} -vector space.