Algebra Preliminary Exam

This exam consists of 5 questions.

- (1) Let G be a group and N a normal subgroup of G. Let $G/N = \{gN : g \in G\}$ be the set of cosets. Show that G/N is a group under the operation $gN \cdot g'N = gg'N$.
- (2) Let G be an abelian group and $n \in \mathbb{N}$. Let $G_n = \{g \in G : g^n = e\}$ where $e \in G$ is the identity element of G and let $G^n = \{g^n : g \in G\}$. Show that $G/G_n \cong G^n$.
- (3) Let p be a prime number.
 - (a) Show that the center of a finite p-group is nontrivial.
 - (b) Show that any group of order p^2 is abelian.

Prove any lemmas you use.

- (4) Let $\phi : R \to R'$ be a ring homomorphism. Show that ker (ϕ) is an ideal of R and that the image $\phi(R)$ is a subring of R'.
- (5) Let α be a irrational real root of the polynomial $X^2 + bX + c$ where b and c are rational. Show that $\mathbb{Q}[\alpha]$, the smallest subring of \mathbb{R} containing the rationals \mathbb{Q} and α , is a field.